organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

6-[3-Hydroxy-17-oxoestra-1,3,5(10)trien-7 β -yl]hexanenitrile

Chishou Yamamoto,^a Taisuke Matsumoto,^b Masataka Watanabe,^a Eckhard M. S. Hitzer,^c Shuntaro Mataka^b and Thies Thiemann^b*

^aInterdisciplinary Graduate School of Engineering, Kyushu University, 6-1 Kasugakoh-en, Kasuga-shi, Fukuoka 816-8580, Japan, ^bInstitute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan, and ^cDepartment of Mechanical Engineering, Fukui University, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan

Correspondence e-mail: thies@cm.kyushu-u.ac.jp

Received 30 June 2003 Accepted 12 December 2003 Online 17 January 2004

In the title compound, $C_{24}H_{31}NO_2$, ring *B* adopts a conformation between the boat and twisted-boat forms. This conformation best accommodates adverse intramolecular $H \cdots H$ interactions between the H atoms of the 7β -substituent and the two nearest ring H atoms. The tilt angle between rings *A* and *D* is 28.6 (1)°.

Comment

Recently, synthetic steroids have been proposed as radiodiagnostic compounds (Katzenellenbogen, 1995; Melo e Silva *et al.*, 2001; Wang *et al.*, 2003), as well as potential drug delivery systems targeting oestrogen receptor positive breast cancer and other diseases associated with the oestrogen receptor ER α . Mandatory for the success of these compounds is a good binding affinity to the receptor. It has been determined that a C7 substituent carrying a long chain with a polar terminus often influences the binding affinity, where the commonly synthesized 7α -substituted estrane-derived steroids have a much better binding affinity than the corresponding 7β epimers. The authors have studied the binding affinity to the oestrogen receptor of C7-substituted estra-1,3,5(10),6-tetraenes, *i.e.* compounds analogous to those described above, but

with the C7 substituent branching off from an sp^2 -hybridized C atom (Inohae *et al.*, 1999; Thiemann *et al.*, 2002). It was deemed advantageous to prepare the 7β -substituted compounds in order to compare the binding affinity and *in vivo* biodistribution of a series of 7α - and 7β -substituted

Figure 1

A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

oestranes and of the corresponding 7-substituted estra-1,3,5(10),6-tetraenes. The measurement of the X-ray crystal structure of the title compound, (I), was carried out in order to better model the complex of a 7β -substituted steroidal ligand and the binding domain of the nuclear receptor, the X-ray crystal structure of which is known.

The molecule of (I), with the atomic numbering scheme, is depicted in Fig. 1. Ring A shows a little distortion from planarity [average mean plane deviation = 0.012 (2) Å], as is also evident in other estrones and estradiols for which X-ray structural analyses have been carried out. Ring C, with trans fusion to rings B and D, is fixed in a chair conformation. In estra-1,3,5(10)-trienes, ring B, as a cyclohexene, is known to be less rigid (Bucourt & Hainault, 1967). This is found in the three known polymorphs of estrone [estra-1,3,5(10)-trien-3-ol-17-one], where all three exhibit a slightly different conformation of ring B, although the α -H atom at C7 in each adopts an axial position (Busetta et al., 1973, and references therein). This situation holds true for derivatives of oestrone that are unsubstituted in ring B and for estradiol [estra-1,3,5(10)triene-3,17 β -diol], where both X-ray crystal structure analyses and calculations (Sebag *et al.*, 2000) show that, again, the α -H atom at C7 (H6) takes an axial position.

The determining effect on the conformation of ring *B* in (I) is the 7β substituent, where potential interactions of the substituent with the C15 α H atom (H14) and minor ones with the C5 α and C5 β H atoms (H5 and H4, respectively) force atom C7 and the C7 β substituent upward, with a concomitant change in the C6–C7–C8–C9 torsion angle to –18.2 (2)°. This compares with the range of –60.9 to –70.6° measured for different estrane analogues of (I), such as for the polymorphs of estrone, epiestradiol and estradiol, and as calculated for these molecules (Kubli-Garfias, 1998). Similarly, the C5–C6–C7–C8 torsion angle here is –35.8 (2)°, compared with the range of 32.1–49.0° measured for the same estrane analogues

Figure 2

A view of the unit cell of (I) down the *a* axis, showing the intermolecular contacts. [Symmetry codes: (i) x, 1 + y, z; (ii) $1 - x, -\frac{1}{2} + y, -z$; (iii) x, -1 + y, z.]

and as calculated (Kubli-Garfias, 1998). The C5-C6-C7-C19 torsion angle is 88.8 (2)°; the equivalent $C5-C6-C7-H7\beta$ torsion angle in estrone is 156.9 and 166.1° for the two crystal forms, respectively (Busetta *et al.*, 1973). The intramolecular 1:4 contact distances $H5\cdots H6$ (2.20 Å) and $H4\cdots H24$ (2.17 Å) are short.

The conformation of ring B is intermediate between a boat and a twisted-boat conformation, as characterized by the Cremer & Pople (1975) puckering parameters, Q =0.717 (3) Å, $\theta = 84.51$ (21)° and $\varphi = 227.8$ (2)° [for a perfect boat conformation, $\theta = 90^{\circ}$ and $\varphi = k \times 60^{\circ}$; for a perfect twisted-boat conformation, $\theta = 90^{\circ}$ and $\varphi = k \times 60^{\circ} + 30^{\circ}$ (Boeyens, 1978)]. This is also in accordance with the relative signs of the endocyclic torsion angles within ring B [see Boeyens (1978)]. In contrast with most other estrane derivatives, neither the α -H atom at C7 (H6) nor the β -H atom at C5 (H4) adopts an axial position. Importantly, this different conformation of ring B leads to a much larger tilt angle between ring D and the phenolic ring A than is known for estra-1,3,5(10)-trienes; for (I), the angle between the two mean planes defined by the C atoms of rings A and D is $28.6(1)^{\circ}$.

The C5–C6, C7–C8 and C8–C9 bond lengths in (I) (Table 1) are significantly longer than those reported for nonsubstituted estrones (Busetta *et al.*, 1973; Hejaz *et al.*, 1999). The C5–C6 and C9–C10 bond lengths have comparable values or are a little shorter. In the crystal structure of (I), the C7 substituent lies above the mean plane defined by the steroidal skeleton (rings *A*, *B*, *C* and *D*, averaged over all 17 atoms of the framework), with a calculated distance from the plane of 3.862 Å for atom C24 and 3.798 Å for atom N1. The chiral centres at C7, C8, C9, C13 and C14 are *S*, *R*, *S*, *S* and *S*, respectively.

In the crystal, compound (I) packs as molecular chains along the *b* axis, bound by a strong O1–H21···N1ⁱ hydrogen bond $[O1\cdots N1^{i} = 2.894 (3) \text{ Å}, H21\cdots N1^{i} = 2.07 \text{ Å}, O1–$ H21···N1ⁱ = 177°; symmetry code: (i) *x*, *y* – 1, *z*] and a weaker C23–H31···O2ⁱⁱ interaction $[C23\cdots O2^{ii} = 3.165 (3) \text{ Å},$ H31···O2ⁱⁱ = 2.39 Å, C23–H31···O2ⁱⁱ = 138 Å; symmetry code: (ii) $-x, \frac{1}{2} + y, -z$], as shown in Fig. 2.

Experimental

Compound (I) was prepared by hydrogenolysis of 3-o-benzyl-7-(5'-cyanopentyl)estra-1,3,5(10),6-tetraen-3-ol-17-one (Pd/C, H₂, Me-OH; Thiemann *et al.*, 2004). 3-o-Benzyl-7 α -(5'-cyanopentyl)estra-1,3,5(10),6-tetraen-3-ol-17-one was prepared from 3-o-benzylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-dioxane)] by a procedure analogous to that described for 3-o-methylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-divane)] by a procedure analogous to that described for 3-o-methylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-diylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-diylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-diylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-diylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-diylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1",3"-di-ylestra-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1,3,5(10),6-trien-3-ol-6,17-dione 17,17-[2"-(5",5"-dimethyl-1,3,5(10),6-trien-3-ol-6,17-dimethyl-1,3,5(10),6-trien-3-ol-6,17-dimethyl-3,5(10),6-trien-3-ol-6,17-dimethyl-3,5(10),6-trien-3-ol-6,17-dimethyl-3,5(10),6-trien-3-ol-6,17-dimethyl-3,5(10),6-trien-3-ol-6,17-dimethyl-3,5

Crystal data	
$C_{24}H_{31}NO_2$	$D_x = 1.188 \text{ Mg m}^{-3}$
$M_r = 365.51$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 9657
a = 6.639 (3) Å	reflections
b = 13.530 (6) Å	$\theta = 3.0-27.5^{\circ}$
c = 11.910(5) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 107.25 \ (3)^{\circ}$	T = 293.1 K
V = 1021.7 (7) Å ³	Needle, colourless
Z = 2	$0.50 \times 0.20 \times 0.12$ mm

organic compounds

Data collection

Rigaku R-AXIS RAPID	2458 independent reflections
diffractometer	2082 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.982, T_{\max} = 0.991$	$k = -17 \rightarrow 17$
20 270 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2 $w = 1/[0.0003F_o^2 + \sigma(F_o^2)]/(4F_o^2)$ R(F) = 0.035 $(\Delta/\sigma)_{max} < 0.001$ $wR(F^2) = 0.082$ $\Delta\rho_{max} = 0.29 \text{ e Å}^{-3}$ S = 1.04 $\Delta\rho_{min} = -0.25 \text{ e Å}^{-3}$ 2441 reflectionsExtinction correction: equation 22276 parametersin Larson (1970)H-atom parameters constrainedExtinction coefficient: 8.9 (5) × 10²

Table 1

Selected geometric parameters (Å, °).

01-C3	1.371 (3)	C7-C8	1.557 (3)
O2-C17	1.209 (3)	C7-C19	1.530 (3)
N1-C24	1.141 (3)	C8-C9	1.562 (3)
C6-C7	1.543 (3)		
C2-C1-C10	121.0 (2)	C9-C8-C7	111.6 (2)
C8-C7-C6	112.0 (2)	C11-C9-C8	113.1 (2)
C4-C5-C6-C7	-129.7 (2)	C6-C7-C8-C14	-140.4 (2)
C10-C5-C6-C7	51.6 (2)	C7-C8-C9-C10	60.3 (2)
C6-C7-C8-C9	-18.2 (2)	C14-C8-C9-C10	-175.9 (2)

The structure was solved by direct methods (Altomare *et al.*, 1999) and expanded using Fourier techniques (Beurskens *et al.*, 1999). The positional parameters of the H atoms were calculated geometrically (C-H = 0.95 Å and O-H = 0.82 Å) and refined using a riding model, with $U_{iso}(H)$ set at $1.2U_{eq}(O, C)$. For geometric calculations, the program *DIHED* (Hitzer, 2003) was used. The ring-puckering analysis was carried out using *PLATON* (Spek, 2003).

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2003); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 1996); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *CrystalStructure*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1026). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). *The DIRDIF99 Program System*. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bucourt, R. & Hainault, D. (1967). Bull. Soc. Chim. Fr. pp. 4562-4567.
- Busetta, B., Courseille, C. & Hospital, M. (1973). Acta Cryst. B29, 298-313.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hejaz, H. A. M., Rurohit, A., Mahon, M. F., Reed, M. J. & Potter, B. V. L. (1999). J. Med. Chem. 42, 3188–3192.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hitzer, E. M. S. (2003). DIHED. URL: http://sinai.mech.fukui-u.ac.jp/gcj/ software/Dihed/index.html.
- Inohae, E., Thiemann, T., Mataka, S., Melo e Silva, M. C. & Patricio Catela, L. (1999). *Rep. Inst. Adv. Mater. Stud.* 13, 31–36; *Chem. Abstr.* (2000), 132, 137610n.
- Katzenellenbogen (1995). J. Nucl. Med. 36, 8S-13S.
- Kubli-Garfias, C. (1998). J. Mol. Struct. (Theochem), 452, 175-183.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Melo e Silva, M. C., Patricio, L., Gano, M. L., Sa e Melo, M. L., Inohae, E., Mataka, S. & Thiemann, T. (2001). Appl. Radiat. Isot. 54, 227–239.
- Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2003). CrystalStructure. Version 3.5.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sebag, A. B., Friel, C. J., Hanson, R. N. & Forsyth, D. A. (2000). J. Org. Chem. 65, 7902–7905.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiemann, T., Umeno, K., Inohae, E., Imai, M., Shima, Y. & Mataka, S. (2002). J. Chem. Res. (S), pp. 1–3; J. Chem. Res. (M), pp. 101–123.
- Thiemann, T., Yamamoto, C., Watanabe, M. & Mataka, S. (2004). J. Chem. Res. Submitted.
- Wang, J., Watanabe, M., Mataka, S., Thiemann, T., Ribeiro Morais, G., Roleira, F. & Tavares da Silva, E. (2003). Z. Naturforsch. Teil B, 58, 799– 804.
- Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.